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Recent studies indicate that aerosol in the Arctic has appreciably offset greenhouse gas
warming and sea ice loss (Najafi et al. 2015, Gagne et al. 2015); at the same time
observations show a warming of the Arctic region that is still much greater than the global
average due to Arctic Amplification mechanisms (Serreze and Barry 2011.) Air quality
regulations are manifesting in declining aerosol burdens across the Arctic, so the rate of
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Higher altitudes and interior impacted by biomass burnin
5 P M 5 Sun photometers that provide aerosol optical depths can not provide information at night or under cloudy skies. In situ

Almost all aerosol measurements were elevated during influence from fires. measurements on unmanned aerial systems (and other approaches such as Lunar photometry) can fill the gaps in
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